Analysis Processing

		-	-
		Impedance	Measures and displays the complex impedance and phase
	mode	measurement	characteristics of a sample
		function	Graph format: Bode diagram, Nyquist diagram, Cole Cole plot
			Measurement item: Z , Y , θ, R, X, G, B
			Open/short correction function
		Gain-phase	Measures and displays the complex gain and phase
		measurement	Graph format: Bode diagram, Nyquist diagram
		function	Measurement items: R ,θ, A (real part of gain), B (imaginary
			part of gain),
			Equalization function
Advanced mode		ced mode	Refer to p. 3 to 6

■ Display Range and Measurement Accuracy

- 100 Hz < Measurement frequency range ≤ 20 kHz
- Immediately after calibration
- Measurement signal input voltages are from 100 mVpeak to 10 Vpeak (up to 2 Vpeak
- Accuracy when measuring impedances, using "Shunt Resistor PA-001-0370"

Parameters with a subscript x (θx, tanδx, Qx and kx) are obtained from actual measurements. Simbol " * " indicates accuracy of the value itself, not the percent (%).

Impedance Measurement

Parameter	Display range	Measurement accuracy
Z [Ω]	± (1E-18 to 999.999E+15) and 0,	±1.5%
R [Ω]	up to 6 digits	$\pm 1.5\%$ ($ \theta x \le 5 \text{ deg}$)
		$\pm 1.5\%/\cos\theta x (\theta x > 5 \text{ deg})$
Χ [Ω]		$\pm 1.5\%$ (θx ≥ 85 deg)
		$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$
G [S]		±1.5% (θx ≤5 deg)
		$\pm 1.5\%/\cos\theta x (\theta x > 5 \text{ deg})$
B [S]		\pm 1.5% (θx ≥ 85 deg)
		$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$
θ [deg]	-9,999.999 to +9,999.999 deg	±0.3 deg
	with 0.001 deg resolution	

Gain-Phase Measurement

Gain-i nase i	Dani-i nase measurement		
Parameter	Display range	Measurement accuracy	
Gain [dB]	-9,999.999 to +9,999.999 deg	±0.05 dB	
	with 0.001 deg resolution		
Real part of	±(1E-18 to 999.999E+15) and	$\pm 0.5\%$ ($ \theta x \le 5 \text{ deg}$, 175 $\text{deg} \le \theta x $)	
gain A	0, up to 6 digits	±0.5%/cosθx (5 deg< θx <175 deg)	
Imaginary part		$\pm 0.5\%$ (85 deg $\leq \theta x \leq 95$ deg)	
of gain B		$\pm 0.5\%/\sin\theta x (\theta x < 85 \text{ deg}, 95 \text{ deg} < \theta x)$	
θ[deg]	-9,999.999 to +9,999.999 deg	±0.3 deg	
	with 0.001 deg resolution		

▼ Advanced Mode

Piezoelectric Material

	io material		
Parameter	Display range	Measurement accuracy	
Y [S]	±(1E-18 to 999.999E+15) and 0,	±1.5%	
G [S]	up to 6 digits	$\pm 1.5\%$ ($ \theta x \le 5 \text{ deg}$)	
		$\pm 1.5\%/\cos\theta x (\theta x > 5 \text{ deg})$	
B [S]		$\pm 1.5\%$ (θx ≥ 85 deg)	
		$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$	
θ [deg]	-9,999.999 to +9,999.999 deg	±0.3 deg	
	with 0.001 deg resolution		

Dielectric Material

Display range	Measurement accuracy		
±(1E-18 to 999.999E+15) and 0,	$\pm 1.5\%$ (θx ≥ 85 deg)		
up to 6 digits	$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$		
	$\pm 1.5\%$ ($ \theta x \le 5 \text{ deg}$)		
	$\pm 1.5\%/\cos\theta x (\theta x > 5 \text{ deg})$		
	±1.5%		
±(0.000001 to 99,999.9) and 0, up to 6 digits	±0.015 (tanδx < 0.1) *		
±(1E-18 to 999.999E+15) and 0,	±1.5% (tanδx ≤ 0.1)		
up to 6 digits	$\pm 1.5\%/\sin\theta x (\tan\delta x > 0.1)$		
	±1.5% (tanδx ≥ 10)		
	$\pm 1.5\%/\cos\theta x$ (tanδx < 10)		
	±(1E-18 to 999.999E+15) and 0, up to 6 digits ±(0.000001 to 99,999.9) and 0, up to 6 digits ±(1E-18 to 999.999E+15) and 0,		

Magnetic Material

Parameter	Display range	Measurement accuracy
Ls [H]	±(1E-18 to 999.999E+15) and 0,	$\pm 1.5\% \ (\theta x \ge 85 \ deg)$
	up to 6 digits	$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$
Rs [Ω]		$\pm 1.5\%$ ($ \theta x \le 5 deg$)
		$\pm 1.5\%/\cos\theta x (\theta x > 5 \text{ deg})$
μs		±1.5%
tanδ	±(0.000001 to 99,999.9) and 0,	±0.015 (tanδx < 0.1) *
	up to 6 digits	
μs'	±(1E-18 to 999.999E+15) and 0,	±1.5% (tanδx ≤ 0.1)
	up to 6 digits	$\pm 1.5\%/\sin\theta x$ ($ \tan\delta x > 0.1$)
μs"		±1.5% (tanδx ≥ 10)
		$\pm 1.5\%/\cos\theta x$ (tanδx < 10)

inductor		
Parameter	Display range	Measurement accuracy
Ls [H]	(1E-18 to 999.999E+15) and 0,	$\pm 1.5\%$ (θx ≥ 85 deg)
	up to 6 digits	$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$
Lp [H]		$\pm 1.5\%$ (θx ≥ 85 deg)
		$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$
Rs [Ω]		±1.5% (θx ≤ 5 deg)
		$\pm 1.5\%/\cos\theta x (\theta x > 5 \text{ deg})$
Rp [Ω]		$\pm 1.5\%$ ($ \theta x \le 5 \text{ deg}$)
		$\pm 1.5\%/\cos\theta x (\theta x > 5 \text{ deg})$
θ [deg]	-9,999.999 to +9,999.999 deg	±0.3 deg
	with 0.001 deg resolution	
Q	(0.000001 to 99,999.9) and 0,	±Qx2×0.0052 / (1-0.0052Qx) *
	up to 6 digits	, ,

Parameter	Display range	Measurement Accuracy
Cs [F]	(1E-18 to 999.999E+15) and 0,	$\pm 1.5\%$ (θx ≥ 85 deg)
	up to 6 digits	$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$
Cp [F]		$\pm 1.5\%$ (θx ≥ 85 deg)
		$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$
Rs [Ω]		$\pm 1.5\%$ ($ \theta x \le 5 \text{ deg}$)
		$\pm 1.5\%/\cos\theta x (\theta x > 5 \text{ deg})$
Rp [Ω]		$\pm 1.5\%$ ($ \theta x \le 5 \text{ deg}$)
		$\pm 1.5\%/\cos\theta x (\theta x > 5 \text{ deg})$
θ [deg]	-9,999.999 to +9,999.999 deg	±0.3 deg
	with 0.001 deg resolution	
Q	±(0.000001 to 99,999.9) and 0,	±Qx ² ×0.0052 / (1-0.0052Qx) *
D	up to 6 digits	±0.015 (tanδx < 0.1) *

Resistor	Resistor		
Parameter	Display range	Measurement accuracy	
Z [Ω]	±(1E-18 to 999.999E+15) and 0,	±1.5%	
R [Ω]	up to 6 digits	$\pm 1.5\%$ ($ \theta x \le 5 \text{ deg}$)	
		$\pm 1.5\%/\cos\theta x (\theta x > 5 \text{ deg})$	
Χ [Ω]		$\pm 1.5\%$ (θx ≥ 85 deg)	
		$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$	
θ [deg]	-9,999.999 to +9,999.999 deg	±0.3 deg	
	with 0.001 deg resolution		

Transformer

Transformer		
Display range	Measurement accuracy	
±(1E-18 to 999.999E+15)	$\pm 1.5\%$ ($ \theta x $ ≥ 85 deg)	
and 0, up to 6 digits	$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$	
	$\pm 1.5\%$ ($ \theta x $ ≥ 85 deg)	
	$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$	
	±1.5%/sinθx	
	(Inductance at aiding connection)	
	>(Inductance at opposing connection ×10)	
	$\pm 1.5\%$ (θx ≥ 85 deg)	
	$\pm 1.5\%/\sin\theta x (\theta x < 85 \text{ deg})$	
0.000 to 1.000	±0.03×(1-kx)%	
with 0.001 resolution		
0.0001 to 9,999,	±1.5%	
up to 4 digits		
	±(1E-18 to 999.999E+15) and 0, up to 6 digits 0.000 to 1.000 with 0.001 resolution 0.0001 to 9,999,	

Parameter	Display range	Measurement accuracy
Cp [F]	±(1E-18 to 999.999E+15) and 0,	±1.5% (Qx ≥ 10)
	up to 6 digits	$\pm 1.5\%/\sin\theta x (Qx < 10)$
Q	±(0.000001 to 99,999.9) and 0,	±Qx ² ×0.0052 / (1-0.0052Qx) *
	up to 6 digits	, , , , , , , , , , , , , , , , , , ,

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Servo		
	Parameter	Display range	Measurement accuracy
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Loop gain	-999.999 to +999.999 dB	±0.05 dB
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Gloop [dB]	with 0.001 dB resolution	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Real part of loop gain	±(1E-18 to 999.999E+15)	$\pm 0.5\%$ ($ \theta x \le 5 \text{ deg}, 175 \text{ deg} \le \theta x $)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Real (Gloop)	and 0, up to 6 digits	$\pm 0.5\%/\cos\theta x$ (5 deg < $ \theta x $ < 175 deg
	Imaginary part of loop		$\pm 0.5\%$ (85 deg $\leq \theta x \leq 95$ deg)
Gfbk [dB] with 0.001 dB resolution Real part of feedback gain tel. [1-18 to 999.999E+15] ±0.5% (θx ≤ 5 deg, 175 deg ≤ θx ≤ 175 deg ≤	Imag (Gloop)		$\pm 0.5\%/\sin\theta x$ ($ \theta x < 85 \text{ deg}$, 95 $\text{deg} < \theta x $)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Feedback gain	-999.999 to +999.999 dB	±0.05 dB
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Gfbk [dB]	with 0.001 dB resolution	
$ \begin{array}{l} \text{Imaginary part of feedback} \\ \text{gain} & \text{Imag} \left(\text{Gfbk}\right) \\ \text{Closed loop gain} \\ \text{Celosed loop gain} \\ \text{Real part of closed loop} \\ \text{gain} & \text{Real} \left(\text{Gclose}\right) \\ \text{Imaginary part of loop} \\ \text{gain} & \text{Imag} \left(\text{Gclose}\right) \\ \text{Imaginary part of loop} \\ \text{gain} & \text{Imag} \left(\text{Gclose}\right) \\ \text{Imaginary part of loop} \\ \text{gain} & \text{Imag} \left(\text{Gclose}\right) \\ \text{Imaginary part of loop} \\ \text{gain} & \text{Imag} \left(\text{Gclose}\right) \\ \text{Imaginary part of loop} \\ \text{gain} & \text{Imag} \left(\text{Gclose}\right) \\ \text{Imaginary part of loop} \\ \text{gain} & \text{Imag} \left(\text{Gclose}\right) \\ \text{Imaginary part of loop} \\ \text{gain} & \text{Imag} \left(\text{Gclose}\right) \\ \text{Imaginary part of loop} \\ \text{gain} & \text{Imag} \left(\text{Gclose}\right) \\ \text{gain} & \text{gain} & \text{gain} \\ \text{gain} \\ \text{gain} & \text{gain} \\ \text{gain} \\ \text{gain} & \text{gain} \\ gai$	Real part of feedback	±(1E-18 to 999.999E+15)	$\pm 0.5\%$ ($ \theta x \le 5 \text{ deg}, 175 \text{ deg} \le \theta x $)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	gain Real (Gfbk)	and 0, up to 6 digits	\pm 0.5%/cosθx (5 deg < θx < 175 deg
	Imaginary part of feedback		$\pm 0.5\%$ (85 deg $\leq \theta x \leq 95$ deg)
	gain Imag (Gfbk)		$\pm 0.5\%/\sin\theta x$ ($ \theta x < 85 \deg$, 95 deg $< \theta x $)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Closed loop gain	-999.999 to +999.999 dB	±0.05dB
gain Real (Gclose) and 0, up to 6 digits ±0.5%/cosθx (5 deg < θx <175 deg Imaginary part of loop gain Imag (Gclose) ±0.5%/sinθx (θx < 85 deg, 95 deg < θx	Gclose [dB]	with 0.001 dB resolution	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Real part of closed loop	±(1E-18 to 999.999E+15)	$\pm 0.5\%$ ($ \theta x \le 5 \text{ deg}, 175 \text{ deg} \le \theta x $)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	gain Real (Gclose)	and 0, up to 6 digits	$\pm 0.5\%/\cos\theta x$ (5 deg < $ \theta x $ <175 deg)
θ [deg] -9,999.999 to +9,999.999 deg ±0.3 deg	Imaginary part of loop		$\pm 0.5\%$ (85 deg $\leq \theta x \leq 95$ deg)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	gain Imag (Gclose)		$\pm 0.5\%/\sin\theta x$ ($ \theta x < 85 \text{ deg}$, 95 deg $< \theta x $)
with 0.001 dB resolution	θ [deg]	-9,999.999 to +9,999.999 deg	±0.3 deg
		with 0.001 dB resolution	

Amplifier Circuit

Parameter	Display range	Measurement accuracy
Gain [dB]	-999.999 to +999.999 dB with 0.001 dB resolution	±0.05 dB
θ [deg]	-9,999.999 to +9,999.999 deg with 0.001 deg resolution	±0.3 deg
Group delay GD [s]	±(1E-15 to 9,999.99) s and 0 s,	+ 1 *1
	up to 6 digits	1200×APT
Common-mode gain GainCOM [dB]	-999.999 to +999.999 dB with 0.001 dB	±0.05 dB
Normal-mode gain GainNORM [dB]	resolution	±0.05 dB
CMRR [dB] (When normal-mode		±0.1 dB
gain are measured)		
CMRR [dB] (When normal-		±0.05 dB
mode gain are setting constant)		
PSRR [dB]		±0.05 dB
Differential gain DG [dB]		±0.05 dB
Differential phase DP [deg]	-9,999.999 to +9,999.999 deg	±0.3 deg
	with 0.001 deg resolution	
ΔGain [dB] (circuit saturation	999.999 to +999.999 dB with 0.001 dB	±0.1 dB
characteristics measurement)	resolution	

Filter Circuit		
Parameter	Display range	Measurement accuracy
Gain [dB]	-999.999 to +999.999 dB with 0.001 dB resolution	±0.05 dB
θ [deg]	-9,999.999 to +9,999.999 deg with 0.001 deg resolution	±0.3 deg
Group delay GD [s]	±(1E-15 to 9,999.99) s and 0 s,	+ 1 e ^{*1}
	up to 6 digits	1200×APT

^{*1} APT: aperture setting (Δf[Hz])

■ Measurement Processing

	•
Auto ranging	Switches the input range in accordance with the input signal level.
Delay	Delays time until start of measurement following switching of frequency.
Integration	Integrates data for measurement, eliminating the noise.
Frequency axis high- density sweep (automatic slow high-density sweep)	When there is a wide variation in the measurement data, the sweep density is automatically increased for the adjacent frequency areas.
Amplitude compression	Controls the oscillation level so that the amplitude level of DUT may stay at certain value in order to keep the DUT from saturation and damage
Equalization (Gain-phase measurement)	Measures the gain-phase frequency response of measure- ment systems such as sensors and cables beforehand and then removes the error of the system in measurement to obtain the characteristics of the DUT only.
Open/short correction (Impedance measurement)	Measures the frequency response of the residual imped- ance and residual admittance for measurement systems such as shunt resistors and cables beforehand and then excludes the measurement system residual values in measurement to obtain the characteristics of the DUT only.
Calibration	System checking and self-error correction.

■ Analyzer Input (CH1/CH2)

2 channels (The impedance measurement assumes the CH-1 as
voltage and the CH-2 as a value converted from current to voltage.)
Insulated BNC connector
1 MΩ ±2%, 25 pF ±5 pF (parallel)
Max. 120 dB (DC to 60 Hz)
Applicable if a signal source impedance is smaller than 1 Ω
250 Vrms continuous (between signal/ground and cabinet, betwee
signal/ground and oscillator, between analysis input channels)
250 Vrms
(when a supplied BNC cable is used)
140 dB typ. (10Hz to 1MHz)

Oscillator (OSC)

` '	
Number of output channels	1
Connector	Insulated BNC connector
Output waveform/	Sine wave
Frequency range	0.1 mHz to 15 MHz, 0.1 mHz resolution
AC amplitude	0 V to 10 Vpeak (at no load)
DC bias	-10 V to +10 V (at no load)
Output impedance	50 Ω ±2% (at 1 kHz) , unbalanced (BNC junction)
Max. output voltage (AC+DC)	±10 V (at no load)
Sweep	Any of Frequency, Amplitude, DC bias, and Zero span (time)
Isolation withstand voltage	250 Vrms continuous (between signal/ground and cabinet,
	between signal/ground and analysis input)

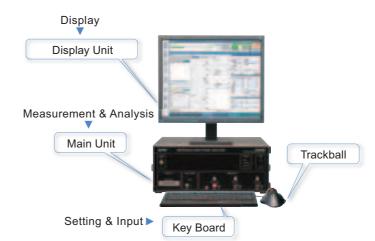
■ Internal Storage Measurement recipe, measurement result data, setting information, correction data, data logger data

■ External Storage

External memory	USB1.1 or USB2.0 compliant USB memory
Connector	Front panel, USB-A connector
File system	FAT32
Maximum capacity	32 GB
File type	Report output: PDF format
	Graph output: BMP format (hardcopy of graph area)
	Measurement recipe: XML format
	Measurement result data: XML format, transfer function: text format
	Data logger: WDB format (a proprietary binary file format)

■ Peripheral Input/Output Function

11000000
USB2.0, 6 ports, USB-A connector
USB1.1, 1 port, USB-B connector (USBTMC)
10 BASE-T/100 BASE-TX/1000 BASE-T,
1 port, RJ-45 type, 8-pin modular jack
Analog RGB, Number of ports: 1, mini D-Sub 15-pin, female
Power output connected to Signal Injector Probe 5055 *3
Control external devices and operate them in conjunction
Signal input: 8 channels, TTL
Input signals:
Start measuring, abort measuring, output ON/OFF
Output signals:
Start measuring, complete measuring, elapsed time since
the start of measurement, output ON/OFF, measuring/Idle
Perform data logging in concert with measurements
1 channel, ±10 V, DC to 10 kHz


^{*2} Connect with an external PC when using ZGA5920 as an FRA compatible unit. *3 Sold separately

■ Miscellaneous Specifications

,			
Power input			AC100 V to 132 V/180 V to 240 V, 50 Hz/60 Hz
	Ambient temperature/ humidity range (excluding printer)		Overvoltage category: II
			Performance guaranteed *3: +5°C to +35°C, 30% to 80% RH
			Storage conditions *3:-10°C to +50°C, 30% to 80% RH
			Pollution degree: 2
Main unit Power consumption: Max. 150 VA, Weight: approx. 12.5 kg		sumption: Max. 150 VA, Weight: approx. 12.5 kg	
Dimension: 430 (W) ×173 (H) ×438 (D) mm (without protrusions)			: 430 (W) ×173 (H) ×438 (D) mm (without protrusions)
Maritan at 1000v1004 det 10 inch Deven constitut Mari 15 W		Late 40 in the Device resource time Many 45 W	

	IVIAIII UIIIL	I ower consumption, wax. 150 vA, weight, approx. 12.5 kg
		Dimension: 430 (W) ×173 (H) ×438 (D) mm (without protrusions)
	Monitor unit	1280×1024 dot, 19 inch, Power consumption: Max. 45 W
		Dimension: 405 (W) ×416 (H) ×205 (D) mm, Weight: approx. 6 kg
	Key board	Power source: supplied from the main unit USB port
	unit	Dimension: 338 (W) ×37 (H) ×251 (D) mm
	Trackball	Power source: supplied from the keyboard USB port
	unit	Dimension: 87 (W) ×43 (H) ×166 (D) mm
	*2 no condono	ation

Configuration

Accessories

• CD-ROM 1	
ZGA5920 Utility Software	
ZGA5920 Software Developer Kit (SDK)	
 ZGA5920 Instruction Manual 	1
 Signal Cable (BNC-BNC 50 Ω, 1 m, 250 Vrms CAT I) 	3
BNC T-Branch (250 Vrms)	1
Ferrite Core (clamp type)	1
 Power Code Set (2 m, with 3-prong plug) 	1

Can be connected a printer to the main unit.

Recommended printer: HP Officejet 100, HP Officejet H470 *Inquire us about other connectable printers.